Rotation of Cube立方体の回転

Rotation of Cube

Rotation of Cube

Rotation of Cube

First, we consider the axis of the rotation.

Orthogonal Transformation

Orthogonal Transformation

f : orthogonal transformation

Orthogonal Transformation

f ：orthogonal transformation
直交変換

Orthogonal Transformation

f ：orthogonal transformation
直交变換
Assume that f maps $\mathrm{P}(1,1,1)$ to point P^{\prime} on the x－axis．

Orthogonal Transformation

f ：orthogonal transformation
直交変換
Assume that f maps $P(1,1,1)$ to point P^{\prime} on the \boldsymbol{x}－axis． f は $\mathrm{P}(1,1,1)$ を x 軸上の点 P^{\prime} に移すとする

Orthogonal Transformation

$\left\{\vec{u}_{1}, \vec{u}_{2}, \vec{u}_{3}\right\}:$ right-handed orthonormal basis satisfying
$\cdot \vec{u}_{1}=\frac{1}{\sqrt{3}}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$

- \vec{u}_{2} is on the $x y$-plane
$\cdot z$ component of \vec{u}_{3} is positive

Orthogonal Transformation

$\left\{\vec{u}_{1}, \vec{u}_{2}, \vec{u}_{3}\right\}:$ right－handed orthonormal basis satisfying 右手系の正規直交基底 $\cdot \vec{u}_{1}=\frac{1}{\sqrt{3}}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$
－\vec{u}_{2} is on the $x y$－plane
－z component of \vec{u}_{3} is positive

Orthogonal Transformation

$\left\{\vec{u}_{1}, \vec{u}_{2}, \vec{u}_{3}\right\}$ ：right－handed orthonormal basis satisfying 右手系の正規直交基底 $\cdot \vec{u}_{1}=\frac{1}{\sqrt{3}}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$
－\vec{u}_{2} is on the $x y$－plane
－z component of \vec{u}_{3} is positive

Orthogonal Transformation

$\left\{\vec{u}_{1}, \vec{u}_{2}, \vec{u}_{3}\right\}:$ right－handed orthonormal basis satisfying 右手系の正規直交基底 $\cdot \vec{u}_{1}=\frac{1}{\sqrt{3}}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$
－\vec{u}_{2} is on the $x y$－plane
－z component of \vec{u}_{3} is positive

Orthogonal Transformation

$\left\{\vec{u}_{1}, \vec{u}_{2}, \vec{u}_{3}\right\}:$ right－handed orthonormal basis satisfying 右手系の正規直交基底 $\cdot \vec{u}_{1}=\frac{1}{\sqrt{3}}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$
－\vec{u}_{2} is on the $x y$－plane
$\cdot z$ component of \vec{u}_{3} is positive

Orthogonal Transformation

$\left\{\vec{u}_{1}, \vec{u}_{2}, \vec{u}_{3}\right\}$ ：right－handed orthonormal basis satisfying 右手系の正規直交基底 $\cdot \vec{u}_{1}=\frac{1}{\sqrt{3}}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$
－\vec{u}_{2} is on the $x y$－plane
－z component of \vec{u}_{3} is positive

Orthogonal Transformation

$\left\{\vec{u}_{1}, \vec{u}_{2}, \vec{u}_{3}\right\}:$ right－handed orthonormal basis satisfying 右手系の正規直交基底 $\cdot \vec{u}_{1}=\frac{1}{\sqrt{3}}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$
－\vec{u}_{2} is on the $x y$－plane
－z component of \vec{u}_{3} is positive

Orthogonal Transformation

$\left\{\vec{u}_{1}, \vec{u}_{2}, \vec{u}_{3}\right\}$ ：right－handed orthonormal basis satisfying 右手系の正規直交基底 $\cdot \vec{u}_{1}=\frac{1}{\sqrt{3}}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$
－\vec{u}_{2} is on the $x y$－plane
－z component of \vec{u}_{3} is positive

Orthogonal Transformation

$\left\{\vec{u}_{1}, \vec{u}_{2}, \vec{u}_{3}\right\}$ ：right－handed orthonormal basis satisfying 右手系の正規直交基底 $\cdot \vec{u}_{1}=\frac{1}{\sqrt{3}}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$
－\vec{u}_{2} is on the $x y$－plane
－z component of \vec{u}_{3} is positive

Orthogonal Transformation

From $\vec{u}_{1} \cdot \vec{u}_{2}=0$
$\vec{u}_{1}=\frac{1}{\sqrt{3}}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right), \vec{u}_{2}=\frac{1}{\sqrt{2}}\left(\begin{array}{r}-1 \\ 1 \\ 0\end{array}\right)$

Orthogonal Transformation

From $\vec{u}_{1} \cdot \vec{u}_{2}=0$
$\vec{u}_{1}=\frac{1}{\sqrt{3}}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right), \quad \vec{u}_{2}=\frac{1}{\sqrt{2}}$
and, then
$\vec{u}_{3}=\vec{u}_{1} \times \vec{u}_{2}$

Orthogonal Transformation

From $\vec{u}_{1} \cdot \vec{u}_{2}=0$
$\vec{u}_{1}=\frac{1}{\sqrt{3}}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right), \quad \vec{u}_{2}=\frac{1}{\sqrt{2}}$
and, then
$\vec{u}_{3}=\vec{u}_{1} \times \vec{u}_{2}$
\rightarrow 問 1

Orthogonal Transformation

From $\vec{u}_{1} \cdot \vec{u}_{2}=\mathbf{0}$
$\vec{u}_{1}=\frac{1}{\sqrt{3}}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right), \vec{u}_{2}=\frac{1}{\sqrt{2}}\left(\begin{array}{r}-1 \\ 1 \\ 0\end{array}\right)$
and, then
$\vec{u}_{3}=\vec{u}_{1} \times \vec{u}_{2}=\frac{1}{\sqrt{6}}\left(\begin{array}{r}-1 \\ -1 \\ 2\end{array}\right)$
\rightarrow 問 1

Orthogonal Transformation

Put $T=\left(\begin{array}{lll}\vec{u}_{1} & \vec{u}_{2} & \vec{u}_{3}\end{array}\right)$

$$
=\left(\begin{array}{ccc}
\frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} \\
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} \\
\frac{1}{\sqrt{3}} & 0 & \frac{2}{\sqrt{6}}
\end{array}\right) \cdot \xrightarrow[x]{\vec{u}_{1}}
$$

Orthogonal Transformation

Put $T=\left(\begin{array}{lll}\vec{u}_{1} & \vec{u}_{2} & \vec{u}_{3}\end{array}\right)$
 for the fundamental vectors $\vec{i}, \vec{j}, \vec{k}$.

Orthogonal Transformation

Put $T=\left(\begin{array}{lll}\vec{u}_{1} & \vec{u}_{2} & \vec{u}_{3}\end{array}\right)$
 for the fundamental vectors $\vec{i}, \vec{j}, \vec{k}$ ．基本ベクトル．．．座標軸に平行（正の向き）で大きさ 1 のベクトル

Orthogonal Transformation

Put $T=\left(\begin{array}{lll}\vec{u}_{1} & \vec{u}_{2} & \vec{u}_{3}\end{array}\right)$
 for the fundamental vectors $\vec{i}, \vec{j}, \vec{k}$ ．

$$
\begin{aligned}
& \text { 基本ベクトル... 座標軸に平行 (正の向き) で大きさ } 1 \text { のベクトル } \\
& \rightarrow \text { 問 } 2
\end{aligned}
$$

Orthogonal Transformation

Since ${ }^{t} \boldsymbol{T} \vec{u}_{1}=\vec{i},{ }^{t} \boldsymbol{T} \vec{u}_{2}=\vec{j},{ }^{t} \boldsymbol{T} \vec{u}_{3}=\vec{k}$, we can use the orthogonal matrix ${ }^{t} T=\left(\begin{array}{ccc}\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ -\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{6}} & \frac{2}{\sqrt{6}}\end{array}\right)$
which represents f.

Orthogonal Transformation

$T=\left(\begin{array}{lll}\vec{u}_{1} & \vec{u}_{2} & \vec{u}_{3}\end{array}\right)$
$=\left(\begin{array}{ccc}\frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & 0 & \frac{2}{\sqrt{6}}\end{array}\right)$

Equation of Hyperbora

Equation of Hyperbora

Each vertex transformed by f, the cube is rotated around the x-axis.

Equation of Hyperbora

Each vertex transformed by f ， the cube is rotated around the x－axis．

各頂点を f で移した立方体を x 軸の周りに回転させる

Equation of Hyperbora

Each vertex transformed by f ， the cube is rotated around the x－axis．

各頂点を f で移した立方体を x 軸の周りに回転させる

Equation of Hyperbora

Each vertex transformed by f ， the cube is rotated around the x－axis．

各頂点を f で移した立方体を x 軸の周りに回転させる

Equation of Hyperbora

Each vertex transformed by f ， the cube is rotated around the x－axis．

各頂点を f で移した立方体を x 軸の周りに回転させる

Equation of Hyperbora

Each vertex transformed by f ， the cube is rotated around the x－axis．

各頂点を f で移した立方体を x 軸の周りに回転させる

Equation of Hyperbora

Each vertex transformed by f ， the cube is rotated around the x－axis．

各頂点を f で移した立方体を x 軸の周りに回転させる

Equation of Hyperbora

Each vertex transformed by f ， the cube is rotated around the x－axis．

各頂点を f で移した立方体を x 軸の周りに回転させる

Equation of Hyperbora

Each vertex transformed by f ， the cube is rotated around the x－axis．

各頂点を f で移した立方体を x 軸の周りに回転させる

Equation of Hyperbora

Each vertex transformed by f ， the cube is rotated around the x－axis．

各頂点を f で移した立方体を x 軸の周りに回転させる

Equation of Hyperbora

Each vertex transformed by f ， the cube is rotated around the x－axis．

各頂点を f で移した立方体を x 軸の周りに回転させる

Equation of Hyperbora

Each vertex transformed by f ， the cube is rotated around the x－axis．

各頂点を f で移した立方体を x 軸の周りに回転させる

Equation of Hyperbora

Each vertex transformed by f ， the cube is rotated around the x－axis．

各頂点を f で移した立方体を x 軸の周りに回転させる

Equation of Hyperbora

Each vertex transformed by f ， the cube is rotated around the x－axis．

各頂点を f で移した立方体を x 軸の周りに回転させる

Equation of Hyperbora

Each vertex transformed by f ， the cube is rotated around the x－axis．

各頂点を f で移した立方体を x 軸の周りに回転させる

Equation of Hyperbora

Each vertex transformed by f ， the cube is rotated around the x－axis．

各頂点を f で移した立方体を x 軸の周りに回転させる

Equation of Hyperbora

Each vertex transformed by f ， the cube is rotated around the x－axis．

各頂点を f で移した立方体を x 軸の周りに回転させる

Equation of Hyperbora

Each vertex transformed by f ， the cube is rotated around the x－axis．

各頂点を f で移した立方体を x 軸の周りに回転させる

Equation of Hyperbora

Each vertex transformed by f, the cube is rotated around the x-axis.

Equation of Hyperbora

Each vertex transformed by f, the cube is rotated around the x-axis.

Equation of Hyperbora

Each vertex transformed by f, the cube is rotated around the x-axis.

Equation of Hyperbora

Each vertex transformed by f, the cube is rotated around the x-axis.

Equation of Hyperbora

Each vertex transformed by f, the cube is rotated around the x-axis.

Equation of Hyperbora

Each vertex transformed by f, the cube is rotated around the x-axis.

Equation of Hyperbora

Each vertex transformed by f, the cube is rotated around the x-axis.

Equation of Hyperbora

Each vertex transformed by f, the cube is rotated around the x-axis.

Equation of Hyperbora

Each vertex transformed by f, the cube is rotated around the x-axis.

Equation of Hyperbora

Each vertex transformed by f, the cube is rotated around the x-axis.

Equation of Hyperbora

Each vertex transformed by f, the cube is rotated around the x-axis.

Equation of Hyperbora

f maps segment QR to $\mathrm{Q}^{\prime} \mathrm{R}^{\prime}$.

Equation of Hyperbora

f maps segment QR to $\mathrm{Q}^{\prime} \mathrm{R}^{\prime}$.

Equation of Hyperbora

QR is represented as follows:

$$
x=t, y=-1, z=1 \quad(-1 \leqq t \leqq 1)
$$

Equation of Hyperbora

QR is represented as follows:

$$
x=t, y=-1, z=1 \quad(-1 \leqq t \leqq 1)
$$

Multiplied by ${ }^{t} T$, equation of $\mathrm{Q}^{\prime} \mathrm{R}^{\prime}$ is

Equation of Hyperbora

QR is represented as follows:

$$
x=t, y=-1, z=1 \quad(-1 \leqq t \leqq 1)
$$

Multiplied by ${ }^{t} T$, equation of $\mathrm{Q}^{\prime} \mathrm{R}^{\prime}$ is

\rightarrow 問 3

Equation of Hyperbora

QR is represented as follows:

Multiplied by ${ }^{t} T$, equation of $\mathrm{Q}^{\prime} \mathrm{R}^{\prime}$ is

$$
\left\{\begin{array}{l}
x=\frac{1}{\sqrt{3}} t \\
y=-\frac{1}{\sqrt{2}}(t+1) \quad(-1 \leqq t \leqq 1) \\
z=-\frac{1}{\sqrt{6}}(t-3)
\end{array}\right.
$$

\rightarrow 問 3

Equation of Hyperbora

Consider intersection of
face of this cube and plane $x=c$,

$|||||\checkmark| \triangleright| \triangle||| \mid 1 / 19$

Equation of Hyperbora

Consider intersection of
face of this cube and plane $x=c$,

Equation of Hyperbora

Consider intersection of
face of this cube and plane $x=c$,

Equation of Hyperbora

Consider intersection of
face of this cube and plane $x=c$,

Equation of Hyperbora

Consider intersection of
face of this cube and plane $x=c$,

Equation of Hyperbora

Consider intersection of
face of this cube and plane $x=c$,

		$\|\triangle\| \mid$ \| \mid 6/19

Equation of Hyperbora

Consider intersection of
face of this cube and plane $x=c$,

Equation of Hyperbora

Consider intersection of
face of this cube and plane $x=c$,

Equation of Hyperbora

Consider intersection of
face of this cube and plane $x=c$,

Equation of Hyperbora

Consider intersection of
face of this cube and plane $x=c$,

$\mid 1 \triangleleft$	\triangleleft	\triangleleft	\triangleright	$\triangleright 1$	$\triangleright\|\mid$	$10 / 19$

Equation of Hyperbora

Consider intersection of
face of this cube and plane $x=c$,

Equation of Hyperbora

Consider intersection of
face of this cube and plane $x=c$,

Equation of Hyperbora

Consider intersection of
face of this cube and plane $x=c$,

$\|\mid$	\triangleleft	\triangleleft	\triangleright	$\triangleright \mid$	$\triangleright\|\mid$	$13 / 19$

Equation of Hyperbora

Consider intersection of
face of this cube and plane $x=c$,

Equation of Hyperbora

Consider intersection of
face of this cube and plane $x=c$,

Equation of Hyperbora

Consider intersection of
face of this cube and plane $x=c$,

$\mid 1 \triangleleft$	\triangleleft	\triangleleft	\triangleright	$\triangleright 1$	$\triangleright 1 \mid$	$16 / 19$

Equation of Hyperbora

Consider intersection of
face of this cube and plane $x=c$,

Equation of Hyperbora

Consider intersection of
face of this cube and plane $x=c$,

Equation of Hyperbora

Consider intersection of
face of this cube and plane $x=c$,

$\|1\|$	\triangleleft	\triangleleft	\triangleright	$\triangle \mid$	$\triangle \\|$	$19 / 19$

Equation of Hyperbora

Consider intersection of
face of this cube and plane $x=c$,
...with circles while rotating it.

| \|| \mid - |
| :---: |

Equation of Hyperbora

Consider intersection of
face of this cube and plane $x=c$,
...with circles while rotating it.

Equation of Hyperbora

Consider intersection of
face of this cube and plane $x=c$,
...with circles while rotating it.

Equation of Hyperbora

Consider intersection of
face of this cube and plane $x=c$,
...with circles while rotating it.

Equation of Hyperbora

Consider intersection of
face of this cube and plane $x=c$,
...with circles while rotating it.

Equation of Hyperbora

Consider intersection of
face of this cube and plane $x=c$,
...with circles while rotating it.

| \|1| | |
| :---: | :---: |

Equation of Hyperbora

Consider intersection of
face of this cube and plane $x=c$,
...with circles while rotating it.

Equation of Hyperbora

Consider intersection of
face of this cube and plane $x=c$,
...with circles while rotating it.

| \|1| | |
| :---: | :---: |

Equation of Hyperbora

Consider intersection of
face of this cube and plane $x=c$,
...with circles while rotating it.

Equation of Hyperbora

Consider intersection of
face of this cube and plane $x=c$,
...with circles while rotating it.

1 k	\checkmark	\triangleright	$\triangle 1$		19

Equation of Hyperbora

Consider intersection of
face of this cube and plane $x=c$,
...with circles while rotating it.

> | $\mid \forall \neg$ | \triangleleft | \triangleleft | \triangleright | $\Delta \mid$ | $\Delta \mid 1$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $1 / 19$ | | | | | |

Equation of Hyperbora

Consider intersection of
face of this cube and plane $x=c$,
...with circles while rotating it.

$\|\mid \checkmark$	\triangleleft	\triangleleft	\triangleright	$\triangleright \mid$	$\triangleright \\|$

Equation of Hyperbora

Consider intersection of
face of this cube and plane $x=c$,
...with circles while rotating it.

Equation of Hyperbora

Consider intersection of
face of this cube and plane $x=c$,
...with circles while rotating it.

$\|\|\exists\|$	\triangleleft	\triangleleft	\triangleright	$\Delta \mid$	$\Delta \\|$	$14 / 19$

Equation of Hyperbora

Consider intersection of
face of this cube and plane $x=c$,
...with circles while rotating it.

Equation of Hyperbora

Consider intersection of
face of this cube and plane $x=c$,
...with circles while rotating it.

$\|\|\exists\|$	\triangleleft	\triangleleft	\triangleright	$\triangleright \mid$	$\triangleright \\|$	$16 / 19$

Equation of Hyperbora

Consider intersection of
face of this cube and plane $x=c$,
...with circles while rotating it.

\|14 $1 /$

Equation of Hyperbora

Consider intersection of
face of this cube and plane $x=c$,
...with circles while rotating it.

Equation of Hyperbora

Consider intersection of
face of this cube and plane $x=c$,
...with circles while rotating it.

Equation of Hyperbora

Consider intersection of face of this cube and plane $x=c$...with circles while rotating it. The radius of circle is distance between the point on the segment $\mathrm{Q}^{\prime} \mathrm{R}^{\prime}$ and x-axis.

Equation of Hyperbora

Consider intersection of
face of this cube and plane $x=c$
．．．with circles while rotating it．
The radius of circle is distance between the point on the segment $\mathrm{Q}^{\prime} \mathrm{R}^{\prime}$ and x－axis．

```
半径は線分 }\mp@subsup{Q}{}{\prime}\mp@subsup{R}{}{\prime}\mathrm{ 上の点 (X,Y,Z)}\mathrm{ と
    x軸上の点 (X,0,0) との距離 }\sqrt{}{\mp@subsup{Y}{}{2}+\mp@subsup{Z}{}{2}
```


Equation of Hyperbora

Consider intersection of
face of this cube and plane $x=c$
．．．with circles while rotating it．
The radius of circle is distance between the point on the segment $\mathrm{Q}^{\prime} \mathrm{R}^{\prime}$ and x－axis．

```
半径は線分 }\mp@subsup{Q}{}{\prime}\mp@subsup{R}{}{\prime}\mathrm{ 上の点 (X,Y,Z)}\mathrm{ と
    x軸上の点 (X,0,0) との距離 \sqrt{}{Y}\mp@subsup{Y}{}{2}+\mp@subsup{Z}{}{2}
    ->問4
```


Equation of Hyperbora

$$
z^{2}=\left\{-\frac{1}{\sqrt{2}}(t+1)\right\}^{2}+\left\{-\frac{1}{\sqrt{6}}(t-3)\right\}^{2}
$$

Equation of Hyperbora

$$
z^{2}=\left\{-\frac{1}{\sqrt{2}}(t+1)\right\}^{2}+\left\{-\frac{1}{\sqrt{6}}(t-3)\right\}^{2}
$$

Equation of Hyperbora

$$
z^{2}=\left\{-\frac{1}{\sqrt{2}}(t+1)\right\}^{2}+\left\{-\frac{1}{\sqrt{6}}(t-3)\right\}^{2}
$$

Equation of Hyperbora

$$
z^{2}=\left\{-\frac{1}{\sqrt{2}}(t+1)\right\}^{2}+\left\{-\frac{1}{\sqrt{6}}(t-3)\right\}^{2}
$$

Equation of Hyperbora

$$
z^{2}=\left\{-\frac{1}{\sqrt{2}}(t+1)\right\}^{2}+\left\{-\frac{1}{\sqrt{6}}(t-3)\right\}^{2}
$$

Equation of Hyperbora

$$
z^{2}=\left\{-\frac{1}{\sqrt{2}}(t+1)\right\}^{2}+\left\{-\frac{1}{\sqrt{6}}(t-3)\right\}^{2}
$$

Equation of Hyperbora

$$
z^{2}=\left\{-\frac{1}{\sqrt{2}}(t+1)\right\}^{2}+\left\{-\frac{1}{\sqrt{6}}(t-3)\right\}^{2}
$$

Equation of Hyperbora

$$
z^{2}=\left\{-\frac{1}{\sqrt{2}}(t+1)\right\}^{2}+\left\{-\frac{1}{\sqrt{6}}(t-3)\right\}^{2}
$$

Equation of Hyperbora

$$
z^{2}=\left\{-\frac{1}{\sqrt{2}}(t+1)\right\}^{2}+\left\{-\frac{1}{\sqrt{6}}(t-3)\right\}^{2}
$$

Equation of Hyperbora

$$
z^{2}=\left\{-\frac{1}{\sqrt{2}}(t+1)\right\}^{2}+\left\{-\frac{1}{\sqrt{6}}(t-3)\right\}^{2}
$$

Equation of Hyperbora

$$
z^{2}=\left\{-\frac{1}{\sqrt{2}}(t+1)\right\}^{2}+\left\{-\frac{1}{\sqrt{6}}(t-3)\right\}^{2}
$$

Equation of Hyperbora

$$
z^{2}=\left\{-\frac{1}{\sqrt{2}}(t+1)\right\}^{2}+\left\{-\frac{1}{\sqrt{6}}(t-3)\right\}^{2}
$$

Equation of Hyperbora

$$
z^{2}=\left\{-\frac{1}{\sqrt{2}}(t+1)\right\}^{2}+\left\{-\frac{1}{\sqrt{6}}(t-3)\right\}^{2}
$$

Equation of Hyperbora

$$
z^{2}=\left\{-\frac{1}{\sqrt{2}}(t+1)\right\}^{2}+\left\{-\frac{1}{\sqrt{6}}(t-3)\right\}^{2}
$$

Equation of Hyperbora

$$
z^{2}=\left\{-\frac{1}{\sqrt{2}}(t+1)\right\}^{2}+\left\{-\frac{1}{\sqrt{6}}(t-3)\right\}^{2}
$$

Equation of Hyperbora

$$
z^{2}=\left\{-\frac{1}{\sqrt{2}}(t+1)\right\}^{2}+\left\{-\frac{1}{\sqrt{6}}(t-3)\right\}^{2}
$$

Equation of Hyperbora

$$
z^{2}=\left\{-\frac{1}{\sqrt{2}}(t+1)\right\}^{2}+\left\{-\frac{1}{\sqrt{6}}(t-3)\right\}^{2}
$$

Equation of Hyperbora

$$
z^{2}=\left\{-\frac{1}{\sqrt{2}}(t+1)\right\}^{2}+\left\{-\frac{1}{\sqrt{6}}(t-3)\right\}^{2}
$$

Equation of Hyperbora

$$
z^{2}=\left\{-\frac{1}{\sqrt{2}}(t+1)\right\}^{2}+\left\{-\frac{1}{\sqrt{6}}(t-3)\right\}^{2}
$$

Equation of Hyperbora

$$
z^{2}=\left\{-\frac{1}{\sqrt{2}}(t+1)\right\}^{2}+\left\{-\frac{1}{\sqrt{6}}(t-3)\right\}^{2}
$$

Equation of Hyperbora

$$
z^{2}=\left\{-\frac{1}{\sqrt{2}}(t+1)\right\}^{2}+\left\{-\frac{1}{\sqrt{6}}(t-3)\right\}^{2}
$$

Equation of Hyperbora

$$
\begin{aligned}
z^{2} & =\left\{-\frac{1}{\sqrt{2}}(t+1)\right\}^{2}+\left\{-\frac{1}{\sqrt{6}}(t-3)\right\}^{2} \\
& =2 \cdot \frac{1}{3} t^{2}+2 \\
&
\end{aligned}
$$

Equation of Hyperbora

$z^{2}=\left\{-\frac{1}{\sqrt{2}}(t+1)\right\}^{2}+\left\{-\frac{1}{\sqrt{6}}(t-3)\right\}^{2}$
$=2 \cdot \frac{1}{3} t^{2}+2$
Using $x=\frac{1}{\sqrt{3}} t$, we have

Equation of Hyperbora

$$
\begin{aligned}
& \begin{array}{l}
z^{2}=\left\{-\frac{1}{\sqrt{2}}(t+1)\right\}^{2}+\left\{-\frac{1}{\sqrt{6}}(t-3)\right\}^{2} \\
\\
=2 \cdot \frac{1}{3} t^{2}+2
\end{array} \\
& \text { Using } x=\frac{1}{\sqrt{3}} t, \text { we have } \\
& z^{2}=2 x^{2}+2, \text { and hence, } \\
& \quad C: x^{2}-\frac{z^{2}}{2}=-1
\end{aligned}
$$

Equation of Hyperbora

$$
\begin{aligned}
& \begin{array}{l}
z^{2}=\left\{-\frac{1}{\sqrt{2}}(t+1)\right\}^{2}+\left\{-\frac{1}{\sqrt{6}}(t-3)\right\}^{2} \\
\\
=2 \cdot \frac{1}{3} t^{2}+2 \\
\text { Using } x=\frac{1}{\sqrt{3}} t, \text { we have } \\
z^{2}=2 x^{2}+2, \text { and hence, } \\
\quad C: x^{2}-\frac{z^{2}}{2}=-1
\end{array} \\
&
\end{aligned}
$$

